1、分数比例形式整除
若a∶b=m∶n(m、n互质),则a是m的倍数,b是n的倍数。
若a=m/n×b,则a=m/(m+n)×(a+b),即a+b是m+n的倍数
2、尾数法
(1)选项尾数不同,且运算法则为加、减、乘、乘方运算,优先使用尾数进行判定;
(2)所需计算数据多,计算复杂时考虑尾数判断快速得到答案。常用在容斥原理中。
3、等差数列相关公式
和=(首项+末项)×项数÷2=平均数×项数=中位数×项数;
项数=(末项-首项)÷项数+1。从1开始,连续的n个奇数相加,总和=n×n,如:1+3+5+7=4×4=16,……
4、几何边端问题相关公式
(1)单边线型植树公式(两头植树):棵树=总长÷间隔+1,总长=(棵树-1)×间隔
(2)植树不移动公式:在一条路的一侧等距离栽种m棵树,然后要调整为种n棵树,则不需要移动的树木棵树为:(m-1)与(n-1)的最大公约数+1棵;
(3)单边环型植树公式(环型植树):棵树=总长÷间隔,总长=棵树×间隔
(4)单边楼间植树公式(两头不植):棵树=总长÷间隔-1,总长=(棵树+1)×间隔
(5)方阵问题:最外层总人数=4×(N-1),相邻两层人数相差8人,n阶方阵的总人数为n?。
5、行程问题
(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)
(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间
(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间
(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速
(5)往返相遇问题公式:
两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)
单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2);
左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N次追上相遇,路程差=(2N-1)×全程。
同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程。
6、几何问题
(1) 三角形三边关系公式:
两边之和大于第三边,两边之差小于第三边。
(2)勾股定理:
直角三角形中,两直角边的平方和等于斜边的平方。常用勾股数:(3、4、5);(5、12、13);(6、8、10)。
(3)内角和定理
正多边形内角和定理,n边形的内角的和等于: (n - 2)×180°(n大于等于3且n为整数)。
已知正多边形内角度数,则其边数为:360°÷(180°-内角度数)。
7、其他问题
(1)经济利润问题常用公式
利润=售价-进价,利润率=利润÷进价,总利润=单利润×销量售价=进价+利润=原价×折扣
(2)溶液问题基本公式
溶液=溶质+溶剂,浓度=溶质÷溶液,溶质=溶液×浓度混合溶液的浓度=(溶质1+溶质2)÷(溶液1+溶液2